📧 [email protected]
🔗 Personal Website
📚 Google Scholar
I'm currently a Neuroscience PhD candidate at the University of Southern California advised by Dr. Paul Thompson at the Imaging Genetics Center. My research interests are developing deep generative models for tract-based diffusion MRI analysis, to help understand macro- and micro-structural changes in white matter tracts in neurodegenerative diseases such as Alzheimer’s and Parkinson’s Disease. I have published significant first-author work on generative models for automated analysis of tractography data. I have extensive experience in applying machine learning and deep learning methods to large multi-site and multi-modal neuroimaging data.
Education
2021-Expected 2026
Ph.D., Neuroscience, GPA: 3.87/4
University of Southern California.📍Los Angeles, CA
2019-2021
MS.E., Computer and Information Science (CIS), GPA: 3.94/4
University of Pennsylvania.📍Philadelphia, PA
2015-2019
B.A., Computer Science and Cognitive Science, GPA: 3.77/4
University of Virginia.📍Charlottesville, VA
Publications
Journal
- Feng, Y., Chandio, B. Q., Villalón-Reina, J. E., Thomopoulos, S. I., Nir, T. M., Benavidez, S., Laltoo, E., Chattopadhyay, T., Joshi, H., Venkatasubramanian. G., John, J. P., Jahanshad, N., Jack, C. R., Weiner M. W., Thompson, P. M., for the Alzheimer’s Disease Neuroimaging Initiative (2024). Microstructural Mapping of Neural Pathways in Alzheimer’s Disease using Macrostructure-Informed Normative Tractometry, submitted to Alzheimer’s & Dementia, Special Issue on the 20th Anniversary of ADNI, May 1, 2024.
- Feng, Y., Kim, M., Yao, X., Liu, K., Long, Q., Shen, L., & for the Alzheimer’s Disease Neuroimaging Initiative. (2022). Deep multiview learning to identify imaging-driven subtypes in mild cognitive impairment. BMC Bioinformatics, 23(S3), 402. https://doi.org/10.1186/s12859-022-04946-x
- Zhang, X., Feng, Y., Li, F., Ding, J., Tahseen, D., Hinojosa, E., Chen, Y., & Tao, C. (2024). Evaluating MedDRA-to-ICD terminology mappings. BMC Medical Informatics and Decision Making, 23(S4), 299. https://doi.org/10.1186/s12911-023-02375-1
Conference Proceedings
- Feng, Y., Chandio, B. Q., Villalón-Reina, J. E., Thomopoulos, S. I., Joshi, H., Nair, G., Joshi, A. A., Venkatasubramanian, G., John, J. P., & Thompson, P. M. (2023). BundleCleaner: Unsupervised Denoising and Subsampling of Diffusion MRI-Derived Tractography Data. In M. Karaman, R. Mito, E. Powell, F. Rheault, & S. Winzeck (Eds.), Computational Diffusion MRI (Vol. 14328, pp. 152–164). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-47292-3_14
- Feng, Y., Chandio, B. Q., Thomopoulos, S. I., Chattopadhyay, T., & Thompson, P. M. (2023). Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting. 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 1–6. https://doi.org/10.1109/EMBC40787.2023.10340009
- Feng, Y., Chandio, B. Q., Chattopadhyay, T., Thomopoulos, S. I., Owens-Walton, C., Jahanshad, N., Garyfallidis, E., & Thompson, P. M. (2023). Learning optimal white matter tract representations from tractography using a deep generative model for population analyses. In M. G. Linguraru, L. Rittner, N. Lepore, E. Romero Castro, J. Brieva, & P. Guevara (Eds.), 18th International Symposium on Medical Information Processing and Analysis (p. 48). SPIE. https://doi.org/10.1117/12.2670244
- Feng, Y., Kim, M., Yao, X., Liu, K., Long, Q., & Shen, L. (2020). Deep Multiview Learning to Identify Population Structure with Multimodal Imaging. 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), 308–314. https://doi.org/10.1109/BIBE50027.2020.00057
Pre-print
- Feng, Y., Chandio, B. Q., Villalon-Reina, J. E., Benavidez, S., Chattopadhyay, T., Chehrzadeh, S., Laltoo, E., Thomopoulos, S. I., Joshi, H., Venkatasubramanian, G., John, J. P., Jahanshad, N., & Thompson, P. M. (2024). Deep Normative Tractometry for Identifying Joint White Matter Macro- and Micro-structural Abnormalities in Alzheimer’s Disease [Preprint]. Neuroscience. https://doi.org/10.1101/2024.02.05.578943
- Chandio, B. Q., Villalon-Reina, J. E., Nir, T. M., Thomopoulos, S. I., Feng, Y., Benavidez, S., Jahanshad, N., Harezlak, J., Garyfallidis, E., & Thompson, P. M. (2024). Bundle Analytics based Data Harmonization for Multi-Site Diffusion MRI Tractometry [Preprint]. Neuroscience. https://doi.org/10.1101/2024.02.03.578764
- Chattopadhyay, T., Joshy, N. A., Ozarkar, S. S., Buwa, K., Feng, Y., Laltoo, E., Thomopoulos, S. I., Villalon, J. E., Joshi, H., Venkatasubramanian, G., John, J. P., & Thompson, P. M. (2024). Brain Age Analysis and Dementia Classification using Convolutional Neural Networks trained on Diffusion MRI: Tests in Indian and North American Cohorts [Preprint]. Neuroscience. https://doi.org/10.1101/2024.02.04.578829
- Homdee, N., Boukhechba, M., Feng, Y. W., Kramer, N., Lach, J., & Barnes, L. E. (2019). Enabling Smartphone-based Estimation of Heart Rate. ArXiv:1912.08910 [Cs, Eess, Stat]. http://arxiv.org/abs/1912.08910
Poster/Abstract
- Feng Y, Chandio BQ, Villalón-Reina JE, Thomopolous SI, Nir TM, Benavidez S, Laltoo E, Chattopadhyay, Joshi H, Venkatasubramanian G, John JP, Jahanshad N, Reid RI, Jack CR, Weiner MW, Thompson PM, or the Alzheimer’s Disease Neuroimaging Initiative. Generative AI for Normative Tractometry: Mapping Microstructural Abnormalities in Dementia [abstract]. ISMRM Workshop on 40 Years of Diffusion: Past, Present & Future Perspectives. 2025 Feb 16-20; Kyoto, Japan.
- Feng, Y., Chandio, B. Q., Villalon-Reina, J. E., Thomopoulos, S. I., Joshi, H., Venkatasubramanian, G., John, J. P., & Thompson, P. M. (2023). Alzheimer’s Disease Effects on White Matter Tracts Mapped using 3D Tractometry in an Indian Cohort. Presented at SfN 2023, Nov. 2023.
- Feng ,Y., Chandio ,B. Q., Garyfallidis, E., Thompson, P.M. (2023) Detecting Structural Anomalies in Tractography using Deep Variational Autoencoders. Presented at OHBM 2023, Jul. 2023.
- Feng, Y., Chandio, B. Q., Chattopadhyay, T., Thomopoulos, S. I., Owens‐Walton, C., Garyfallidis, E., Jahanshad, N., & Thompson, P. M. (2022). Learning Streamline Embeddings with Variational Autoencoder for Intersubject Bundle Comparison in Alzheimer’s Disease. Alzheimer’s & Dementia, 18(S5). https://doi.org/10.1002/alz.066204
- Feng, Y., Chandio, B. Q., Chattopadhyay, T., Thomopoulos, S. I. , Owens-Walton, C., Jahanshad, N., Garyfallidis, E., Thompson, P.M. (2022). Deep generative model for learning tractography streamline embeddings based on Convolutional Variational Autoencoder. ISMRM 2022, London, England, UK, May 07-12, 2022.
- Feng, Y., Kim, M., Liu, K., Saykin, A. J., Moore, J. H., Long, Q., & Shen, L. (2021). Identifying multimodal imaging‐driven subtypes in mild cognitive impairment using deep multiview learning. Alzheimer’s & Dementia, 17(S4). https://doi.org/10.1002/alz.052718
Presentations
Jun 2022
Learning meaningful white matter tract representations from tractography using deep generative model.
Neuroscience Graduate Forum, University of Southern California. 📍Los Angeles, CA.
Aug 2021
Deep Multiview Learning to Identify Imaging-driven Subtypes in Mild Cognitive Impairment.
International Conference on Intelligent Biology and Medicine (ICIBM 2021).📍 Virtual.
Mar 2021
Identifying Alzheimer's Disease Population Structure From Multimodal Imaging Using Deep Multiview Learning Framework.
Third Annual DBEI & CCEB Research Day at University of Pennsylvania.📍 Virtual.
Aug 2018
Improving MedDRA to ICD Mapping Coverage: Current Gaps and Future Mapping Strategies.
Cancer Prevention Research Institute of Texas (CPRIT) Undergraduate Summer Program.📍 Houston, TX.
Honor & Awards
Nov 2022
Aug 2021
Travel Award, International Conference on Intelligent Biology and Medicine (ICIBM)
📍 Philadelphia PA.